29 research outputs found

    Boosting Schizophrenia Genetics by Utilizing Genetic Overlap With Brain Morphology

    Get PDF
    Background Schizophrenia is a complex polygenic disorder with subtle, distributed abnormalities in brain morphology. There are indications of shared genetic architecture between schizophrenia and brain measures despite low genetic correlations. Through the use of analytical methods that allow for mixed directions of effects, this overlap may be leveraged to improve our understanding of underlying mechanisms of schizophrenia and enrich polygenic risk prediction outcome. Methods We ran a multivariate genome-wide analysis of 175 brain morphology measures using data from 33,735 participants of the UK Biobank and analyzed the results in a conditional false discovery rate together with schizophrenia genome-wide association study summary statistics of the Psychiatric Genomics Consortium (PGC) Wave 3. We subsequently created a pleiotropy-enriched polygenic score based on the loci identified through the conditional false discovery rate approach and used this to predict schizophrenia in a nonoverlapping sample of 743 individuals with schizophrenia and 1074 healthy controls. Results We found that 20% of the loci and 50% of the genes significantly associated with schizophrenia were also associated with brain morphology. The conditional false discovery rate analysis identified 428 loci, including 267 novel loci, significantly associated with brain-linked schizophrenia risk, with functional annotation indicating high relevance for brain tissue. The pleiotropy-enriched polygenic score explained more variance in liability than conventional polygenic scores across several scenarios. Conclusions Our results indicate strong genetic overlap between schizophrenia and brain morphology with mixed directions of effect. The results also illustrate the potential of exploiting polygenetic overlap between brain morphology and mental disorders to boost discovery of brain tissue–specific genetic variants and its use in polygenic risk frameworks.publishedVersio

    Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry

    Get PDF
    Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have yet to be adequately characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18–87 years. To compare the tissue-specific brain ages and their cognitive sensitivity, we applied each of the 11 models in an independent and cognitively well-characterized sample (n = 265, 20–88 years). Correlations between true and estimated age and mean absolute error (MAE) in our test sample were highest for the most comprehensive brain morphometry (r = 0.83, CI:0.78–0.86, MAE = 6.76 years) and white matter microstructure (r = 0.79, CI:0.74–0.83, MAE = 7.28 years) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders

    Diphtheria And Tetanus Vaccination History Is Associated With Lower Odds of COVID-19 Hospitalization

    No full text
    Background COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10 -5 ; tetanus OR=0.52, p-value=1.2*10 -4 ). Discussion These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations

    Quality control strategies for brain MRI segmentation and parcellation: Practical approaches and recommendations - insights from the Maastricht study

    No full text
    Quality control of brain segmentation is a fundamental step to ensure data quality. Manual quality control strategies are the current gold standard, although these may be unfeasible for large neuroimaging samples. Several options for automated quality control have been proposed, providing potential time efficient and reproducible alternatives. However, those have never been compared side to side, which prevents consensus in the appropriate quality control strategy to use. This study aimed to elucidate the changes manual editing of brain segmentations produce in morphological estimates, and to analyze and compare the effects of different quality control strategies on the reduction of the measurement error.Structural brain MRI from 259 participants of The Maastricht Study were used. Morphological estimates were automatically extracted using FreeSurfer 6.0. Segmentations with inaccuracies were manually edited, and morphological estimates were compared before and after editing. In parallel, 12 quality control strategies were applied to the full sample. Those included: two manual strategies, in which images were visually inspected and either excluded or manually edited; five automated strategies, where outliers were excluded based on the tools “MRIQC” and “Qoala-T”, and the metrics “morphological global measures”, “Euler numbers” and “Contrast-to-Noise ratio”; and five semi-automated strategies, where the outliers detected through the mentioned tools and metrics were not excluded, but visually inspected and manually edited. In order to quantify the effects of each quality control strategy, the proportion of unexplained variance relative to the total variance was extracted after the application of each strategy, and the resulting differences compared.Manually editing brain surfaces produced particularly large changes in subcortical brain volumes and moderate changes in cortical surface area, thickness and hippocampal volumes. The performance of the quality control strategies depended on the morphological measure of interest. Overall, manual quality control strategies yielded the largest reduction in relative unexplained variance. The best performing automated alternatives were those based on Euler numbers and MRIQC scores. The exclusion of outliers based on global morphological measures produced an increase of relative unexplained variance.Manual quality control strategies are the most reliable solution for quality control of brain segmentation and parcellation. However, measures must be taken to prevent the subjectivity associated with these strategies. The detection of inaccurate segmentations based on Euler numbers or MRIQC provides a time efficient and reproducible alternative. The exclusion of outliers based on global morphological estimates must be avoided

    Association of hippocampal subfield volumes with prevalence, course and incidence of depressive symptoms:The Maastricht Study

    No full text
    BACKGROUND: Late-life depression has been associated with volume changes of the hippocampus. However, little is known about its association with specific hippocampal subfields over time. AIMS: We investigated whether hippocampal subfield volumes were associated with prevalence, course and incidence of depressive symptoms. METHOD: We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using -weighted and fluid-attenuated inversion recovery 3T magnetic resonance images. Depressive symptoms were assessed at baseline and annually over 7 years of follow-up (9-item Patient Health Questionnaire). We used negative binominal, logistic, and Cox regression analyses, corrected for multiple comparisons, and adjusted for demographic, cardiovascular and lifestyle factors. RESULTS: A total of = 4174 participants were included (mean age 60.0 years, s.d. = 8.6, 51.8% female). Larger right hippocampal fissure volume was associated with prevalent depressive symptoms (odds ratio (OR) = 1.26, 95% CI 1.08-1.48). Larger bilateral hippocampal fissure (OR = 1.37-1.40, 95% CI 1.14-1.71), larger right molecular layer (OR = 1.51, 95% CI 1.14-2.00) and smaller right cornu ammonis (CA)3 volumes (OR = 0.61, 95% CI 0.48-0.79) were associated with prevalent depressive symptoms with a chronic course. No associations of hippocampal subfield volumes with incident depressive symptoms were found. Yet, lower left hippocampal amygdala transition area (HATA) volume was associated with incident depressive symptoms with chronic course (hazard ratio = 0.70, 95% CI 0.55-0.89). CONCLUSIONS: Differences in hippocampal fissure, molecular layer and CA volumes might co-occur or follow the onset of depressive symptoms, in particular with a chronic course. Smaller HATA was associated with an increased risk of incident (chronic) depression. Our results could capture a biological foundation for the development of chronic depressive symptoms, and stresses the need to discriminate subtypes of depression to unravel its biological underpinnings

    Reliability, sensitivity, and predictive value of fMRI during multiple object tracking as a marker of cognitive training gain in combination with tDCS in stroke survivors

    No full text
    Computerized cognitive training (CCT) combined with transcranial direct current stimulation (tDCS) has showed some promise in alleviating cognitive impairments in patients with brain disorders, but the robustness and possible mechanisms are unclear. In this prospective double‐blind randomized clinical trial, we investigated the feasibility and effectiveness of combining CCT and tDCS, and tested the predictive value of and training‐related changes in fMRI‐based brain activation during attentive performance (multiple object tracking) obtained at inclusion, before initiating training, and after the three‐weeks intervention in chronic stroke patients (>6 months since hospital admission). Patients were randomized to one of two groups, receiving CCT and either (a) tDCS targeting left dorsolateral prefrontal cortex (1 mA), or (b) sham tDCS, with 40s active stimulation (1 mA) before fade out of the current. Of note, 77 patients were enrolled in the study, 54 completed the cognitive training, and 48 completed all training and MRI sessions. We found significant improvement in performance across all trained tasks, but no additional gain of tDCS. fMRI‐based brain activation showed high reliability, and higher cognitive performance was associated with increased tracking‐related activation in the dorsal attention network and default mode network as well as anterior cingulate after compared to before the intervention. We found no significant associations between cognitive gain and brain activation measured before training or in the difference in activation after intervention. Combined, these results show significant training effects on trained cognitive tasks in stroke survivors, with no clear evidence of additional gain of concurrent tDCS

    Genetic Overlap Between Alzheimer’s Disease and Depression Mapped Onto the Brain

    No full text
    Background: Alzheimer’s disease (AD) and depression are debilitating brain disorders that are often comorbid. Shared brain mechanisms have been implicated, yet findings are inconsistent, reflecting the complexity of the underlying pathophysiology. As both disorders are (partly) heritable, characterising their genetic overlap may provide aetiological clues. While previous studies have indicated negligible genetic correlations, this study aims to expose the genetic overlap that may remain hidden due to mixed directions of effects. Methods: We applied Gaussian mixture modelling, through MiXeR, and conjunctional false discovery rate (cFDR) analysis, through pleioFDR, to genome-wide association study (GWAS) summary statistics of AD ( n = 79,145) and depression ( n = 450,619). The effects of identified overlapping loci on AD and depression were tested in 403,029 participants of the UK Biobank (UKB) (mean age 57.21, 52.0% female), and mapped onto brain morphology in 30,699 individuals with brain MRI data. Results: MiXer estimated 98 causal genetic variants overlapping between the 2 disorders, with 0.44 concordant directions of effects. Through pleioFDR, we identified a SNP in the TMEM106B gene, which was significantly associated with AD ( B = −0.002, p = 9.1 × 10 –4 ) and depression ( B = 0.007, p = 3.2 × 10 –9 ) in the UKB. This SNP was also associated with several regions of the corpus callosum volume anterior ( B > 0.024, p < 8.6 × 10 –4 ), third ventricle volume ventricle ( B = −0.025, p = 5.0 × 10 –6 ), and inferior temporal gyrus surface area ( B = 0.017, p = 5.3 × 10 –4 ). Discussion: Our results indicate there is substantial genetic overlap, with mixed directions of effects, between AD and depression. These findings illustrate the value of biostatistical tools that capture such overlap, providing insight into the genetic architectures of these disorders

    Quantifying the Polygenic Architecture of the Human Cerebral Cortex: Extensive Genetic Overlap between Cortical Thickness and Surface Area.

    No full text
    The thickness of the cerebral cortical sheet and its surface area are highly heritable traits thought to have largely distinct polygenic architectures. Despite large-scale efforts, the majority of their genetic determinants remain unknown. Our ability to identify causal genetic variants can be improved by employing brain measures that better map onto the biology we seek to understand. Such measures may have fewer variants but with larger effects, that is, lower polygenicity and higher discoverability. Using Gaussian mixture modeling, we estimated the number of causal variants shared between mean cortical thickness and total surface area, as well as the polygenicity and discoverability of regional measures. We made use of UK Biobank data from 30 880 healthy White European individuals (mean age 64.3, standard deviation 7.5, 52.1% female). We found large genetic overlap between total surface area and mean thickness, sharing 4016 out of 7941 causal variants. Regional surface area was more discoverable (P = 2.6 × 10-6) and less polygenic (P = 0.004) than regional thickness measures. These findings may serve as a roadmap for improved future GWAS studies; knowledge of which measures are most discoverable may be used to boost identification of genetic predictors and thereby gain a better understanding of brain morphology

    The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study

    No full text
    Aims/hypothesis: We investigated whether prediabetes, type 2 diabetes, and continuous measures of hyperglycemia are associated with tissue volume differences in specific subfields of the hippocampus. Methods: We used cross-sectional data from 4,724 participants (58.7 ± 8.5 years, 51.5% women) of The Maastricht Study, a population-based prospective cohort. Glucose metabolism status was assessed with an oral glucose tolerance test, and defined as type 2 diabetes (n = 869), prediabetes (n = 671), or normal glucose metabolism (n = 3184). We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1w and FLAIR 3T MRI images. We used multiple linear regression and linear trend analysis, and adjusted for total intracranial volume, demographic, lifestyle, and cardiovascular risk factors. Results: Type 2 diabetes was significantly associated with smaller volumes in the hippocampal subfield fimbria (standardized beta coefficient ± standard error (β ± SE) = -0.195 ± 0.04, p-value < 0.001), the hippocampus proper, i.e. Cornu Ammonis (CA) 1, CA2/3, CA4, dentate gyrus, subiculum and presubiculum (β ± SE < -0.105 ± 0.04, p-value < 0.006); as well as the hippocampal tail (β ± SE = -0.162 ± 0.04, p-value < 0.001). Prediabetes showed no significant associations. However, linear trend analysis indicated a dose–response relation from normal glucose metabolism, to prediabetes, to type 2 diabetes. Multiple continuous measures of hyperglycemia were associated with smaller volumes of the subfields fimbria (β ± SE < -0.010 ± 0.011, p-value < 0.001), dentate gyrus (β ± SE < -0.013 ± 0.010, p-value < 0.002), CA3 (β ± SE < -0.014 ± 0.011, p-value < 0.001), and tail (β ± SE < -0.006 ± 0.012, p-value < 0.003). Conclusions/interpretation: Type 2 diabetes and measures of hyperglycemia are associated with hippocampal subfield atrophy, independently of lifestyle and cardiovascular risk factors. We found evidence for a dose–response relationship from normal glucose metabolism, to prediabetes, to type 2 diabetes. Prediabetes stages could give a window of opportunity for the early prevention of brain disease
    corecore